药物干法制粒机实验室LG-5
干法制粒就是药物和稀释剂、崩解剂、滑润剂等混合均匀,压缩成条带或片状后,再粉碎成所需颗粒大小的方法。
固体制剂生产目前在医药产品生产中仍然是常见的,但是有些产品由于物料流动性较差,所以必须经过制粒才可以改善物料的流动性,目前制粒是生产固体剂型以改善粉末性质的一种常见的操作方法。
干法制粒的目的一般是改善物料流动性、消除湿法制粒引起的降解从而提高产品稳定性、防止物料间分层现象、增加堆密度等。
干法制粒技术相比于更成熟的湿法制粒技术具有许多优势,但同时也存在一些问题,下面让我们一起来看看干法制粒技术的优势及缺点吧。
干法制粒的优势及缺点
1、干法制粒的优势
干法制粒是一种团聚的过程。选择干法造粒工艺既有产品优势,又有工艺优势。
一般来说,干法造粒相比于湿法造粒的一个主要的优点是不需要水或任何有机溶剂。因此,这种方法对一些药物特别适用,因为有些药物对水分或热是敏感的。此外,干法制粒过程是环保的,无废气排放,减少了环境污染。并且干法制粒技术是一种高效且易于自动化的工艺,该工艺易于放大,操作简单,成本较低。干法制粒后成品的粒度均匀,堆积密度增加、流动性改善及可控制崩解度,同时便于后续加工、贮存和运输。
药物或辅料流动性差或对热或水分敏感,则可以使用干法制粒技术。然而干法制粒技术目前也存在一些技术问题,下面让我们一起看看干法制粒过程中存在的问题及解决方法吧。
2、干法制粒技术的缺点及其解决办法
(1)未压实物料或细粉泄漏
一,使用凹辊进行密封,因为辊侧密封圈之间的泄漏会产生未压实的物料。二,物料回收后可再制粒,但是如果泄漏细粉的组成不同于总的组成,这将导致终产品的不均匀。此外,物料的多次辊压会对物料的可压性产生负面影响。三,设备周围抽真空,防止粉末飞溅。
(2)物料可压性损失
物料可压性的损失是干法制粒中常见的问题,在较高的碾压力下更为明显。物料可压性的损失主要发生在塑性物料中,但也发生在脆性物料中。通常干法制粒时辊压力较高,以达到所需的颗粒特性,但在满足产品质量的前提下应尽可能降低辊轴压力,以避免物料可压性的损失。过度压缩会导致物料条带变色、过热、严重破裂或塑化。
(3)物料粘辊
可加入润滑剂,控制好物料水分在范围内,可选用 Tg 较高的糊精、麦芽糊精等辅料,并采用冷却水有效降低辊轮表面温度,控制好适当的辊轮压力和生产环境相对湿度,避免粘辊。
(4)压制条带分层
控制物料的粒径分布、密度等性能的一致性,减少分层。
影响干法制粒的因素
1、物料对干法制粒的影响
(1)可压性:可压性是保证物料能否压制成条带的重要因素。物料的可压性取决于其受压时发生的是弹性形变还是塑性形变,一般塑性辅料的可压性较好。
(2)水分:当物料水分过高时,在辊压过程中可能会产生粘辊现象,而水分过低时,物料可能不易压成条带片。
(3)物料粘性:粘性是指物料粘结和聚合的能力,干法制粒的物料必须控制其粘性范围。
2、设备参数对干法制粒的影响
一般送料速度、辊轴压力、辊轴转速对干法制粒影响较大。对颗粒得率和脆碎度影响的大小顺序均为: 辊轮转速 > 辊轮压力 > 水平送料速度。颗粒得率与辊轮压力、水平送料速度呈正相关,与辊轮转速呈负相关,颗粒脆碎度与之相反。
1042
- 1无卤低烟阻燃材料中炭黑含量检测结果异常情况的分析
- 2GB 36246-2018中小学合成材料面层运动场地全文
- 3ASTM-D638-2003--中文版-塑料拉伸性能测定方法
- 4GBT 15065-2009 电线电缆用黑色聚乙烯塑料
- 5GB_T2951.41-2008电缆和光缆绝缘和护套材料通用试验方法
- 6GBT 13021-2023 聚烯烃管材和管件 炭黑含量的测定 煅烧和热解法
- 7PEG熔融相变温度测试
- 8聚碳酸酯(PC) DSC测试玻璃化转变温度
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文集 ▏化学吸附 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注?
- 为什么介孔SiO2在药物递送领域的应用越来越多?
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 飞纳台式扫描电镜助力纳米纤维在心血管组织再生中的研究
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机