超微孔是指孔径小于1nm 的孔道或间隙,具有超微孔的材料可以是超微孔分子筛、超微孔碳材料、MOF 材料等。对于这些材料,传统的比表面计算方法如 BET 方法不能用于超微孔孔道比表面的计算,并且一些基于宏观热力学的孔径分布计算方法,诸如 MP、BJH、DH 等也无法计算超微孔材料的孔径分布。
引入经典理论方法如密度泛函 DFT,是目前计算微孔、乃至超微孔的有效手段。DFT 方法建立吸附质流体(如吸附气体氮气)与吸附质流体之间,以及吸附质流体与吸附剂表面之间的作用势函数,这些势函数与超微孔内部吸附质流体的物质分布密度(吸附 kernel 曲线)密切相关。通过吸附质流体孔道内部的密度分布,就能得到基于 DFT 方法的理论吸附等温线,从而求得孔径分布。
虽然氮气和氩气是常用的吸附质气体,但是氮气和氩气的 DFT 模型却很难有效地计算超微孔的孔径分布。氮气由于较大的分子运动学直径(0.364 nm)和四极矩(-4.91·1040 cm2),使其不适合表面极性较强的超微孔吸附,比如超微孔分子筛。
氩气(无四极矩)虽然是 IUPAC 推荐的可取代氮气的测试气体,但其分子运动学直径(0.340 nm)仍然会造成其在超微孔,特别是超超微孔(< 0.5 nm)结构中的输运困难,造成过长的吸附平衡时间,甚至无法有效吸附。此外,使用氩气吸附进行孔径分布计算,还需要使用液氩作为冷质。
* Micromeritics 3Flex 三站全功能型多用气体吸附仪
为了解决以上问题,使用氢气(分子运动学直径:0.289 nm;四极矩:2.2·1040 cm2)作为探针气体分子表征超微孔结构是个不错的选择。氢气分子由于其较小的四极矩和极化率和分子运动学直径,能够快速输运到孔道内部发生吸附。另外,氢气吸附可以在液氮温度下进行。在液氮温度下,氢分子流体为超临界流体,这也是氢分子可以快速扩散到超微孔内部的一个重要原因。
图1. 超微孔碳材料的氢气孔径分布
图 1 为基于氢气 DFT 模型(HS-2D-NLDFT)的某超微孔碳材料的孔径分布。Micromeritics 的 HS-2D-NLDFT 模型同时引入表面能和表面粗糙度两个额外维度作为变量,同时对于氢气吸附,氢气 DFT 模型还引入了氢气的量子效应修正。
µFH (r) = µ(r) + µq(r) (1)
µFH(r) 为 Feymann-Hibbs 作用势函数修正,其等于传统作用势函数 µ(r) 加上量子修正过的作用势函数 µq(r)。
对于传统的吸附质气体(如氮气、氩气、二氧化碳等),孔径分布的极限一般难以得到 0.3 nm 极限附近的分布。而由于氢气本身其小于 0.3 nm 的分子运动学直径,结合氢气 HS-2D-NLDFT 模型,便可以得到小于 0.3 nm 的超超微孔信息。
图2. 某超微孔沸石的超超微孔部分孔径分布
图 2 中显示了利用液氮温度下的氢气吸附,通过 Micromeritics 的氢气 HS-2D-NLDFT 模型,得到了此材料的超超微孔部分,孔径分析的下限达到了 0.296 nm。
图3. 某碳材料氢气加氮气的综合孔径分布
最后,对于一种材料,也可以使用多种吸附质气体作为探针分子表征孔道信息,比如可以结合氢气和氧气的吸附数据,或者氢气和氮气(图 3)的吸附数据等等诸如此类的吸附数据组合,得到更完整,更宽泛的孔径分布,甚至结合压汞数据得到从超超微孔到近毫米级别孔道的全孔经分布。此相关内容也可回看我们之前的网络研讨会或浏览往期应用笔记。
750
- 1无卤低烟阻燃材料中炭黑含量检测结果异常情况的分析
- 2GB 36246-2018中小学合成材料面层运动场地全文
- 3ASTM-D638-2003--中文版-塑料拉伸性能测定方法
- 4GBT 15065-2009 电线电缆用黑色聚乙烯塑料
- 5GB_T2951.41-2008电缆和光缆绝缘和护套材料通用试验方法
- 6GBT 13021-2023 聚烯烃管材和管件 炭黑含量的测定 煅烧和热解法
- 7PEG熔融相变温度测试
- 8聚碳酸酯(PC) DSC测试玻璃化转变温度
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文集 ▏化学吸附 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注?
- 为什么介孔SiO2在药物递送领域的应用越来越多?
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 飞纳台式扫描电镜助力纳米纤维在心血管组织再生中的研究
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机
- 国产新品泡沫起升仪可替代德国format