一、背景硅材料在锂离子电池中主要用作负极材料。与石墨材料组成硅碳复合材料,其比容量和抗压性较传统石墨烯材料优势更加显著,是实现高能量密度储能电池的关键材料。粉末材料性能与电池容量、倍率及安全性能密切相关,而粉末材料电阻率是粉末性能评估的关键参数之一。粉末材料电阻率常用的测定方法有两探针和四探针两种方式(如图1),两探针法的测试电极分别置于样品上下两侧,通过施加激励电流,检测样品上下两侧的电压,最终
一背景随着全球对清洁能源和高效储能技术的需求日益增长,锂离子电池作为当前主流的储能装置,其性能提升与安全性改进成为了科研与产业界的共同目标。在这一背景下,固态电解质因其潜在的高能量密度、长循环寿命、低热失控风险以及可能实现的无枝晶锂沉积等特性,被视为下一代锂离子电池技术的关键突破点。离子电导率是指电解质溶液中的离子对电流传导的能力,它是一个物质的电离程度的度量。高离子电导率的固态电解质能够使锂离子
多孔炭材料由于具有合适的表面化学性质、较高的电子传输速率、大的比表面积和孔隙率,易于发生嵌锂反应,可提供远高于石墨负极的充放电比容量。良好的导电性确保了有效的电子传输,高的比表面积可以与电解液进行充分接触,而大的孔隙体积使其能够容纳锂化过程中的体积变化,这些优点使多孔炭材料在锂离子电极材料中得到了广泛的应用。而电阻率是衡量粉末样品性能的重要参数,也是目前最受业内企业关注的参数。我们使用FDM-16
早在20世纪70年代,硅作为一种锂存储材料就已受到研究者的关注。实际上,诸多电池开发人员早期首选的负极材料是锂金属,但由于锂金属负极在长期循环过程中存在诸如锂枝晶、粉化、死锂等一系列问题,同时,锂金属的价格高且波动大,再加上生产存储环境要求苛刻,人们开始寻找替代锂金属的负极材料,硅基材料就是其中最有希望的一类。近年来,硅碳负极材料在动力电池领域的应用日益增强,年产量己突破千吨级别,并预期将逐步迈向
在电池制造过程中,极片的制造质量是产品的质量的重要影响因素之一,而极片制造的关键工序之一为合浆工序,合浆工序所产出的浆料质量,将直接决定所涂覆形成的极片的质量。因此,判定浆料的质量优劣,是电池制作的关键控制步骤。而浆料在搅拌过程中会迅速升温。从而影响电阻率,我们使用JL-110产品,通过测试浆料在不同温度下电阻的差异,评估温度的影响程度。以助力研发决策。测试方法:将浆料笔放入待测浆料中,将浆料杯泡
在锂离子电池领域,能量密度是衡量材料储能能力的一个重要参数,是评估电池性能的一项重要指标。能量密度是指单位体积内所含的能量,一般来说与压实密度呈正相关关系。提高压实密度通常意味着提高了材料的紧密程度和储能能力,是提高电池能量密度的重要手段。而在锂离子电池的众多组成部分中,石墨作为大部分电池的负极材料,其压实密度对电池的整体性能具有至关重要的影响。因此,测试石墨压实密度在锂离子电池研究中显得尤为重要
随着商业化动力电池的迅猛发展,对电芯生产的一致性要求也越来越严苛。粉末材料作为制作电芯的重要成分,其稳定性要求也相应提高。电阻率是粉末样品重要的一个参数,也是电芯厂家最为关注的参数之一,长期监控粉末材料的电阻率变化有利于观察样品受环境影响情况,实时了解样品的稳定性。我们使用FDM-1650产品,每天对磷酸铁锂的电阻率数据进行收集,通过一段时间的数据对比,可以了解到磷酸铁锂短期内受环境影响情况,实现
锂离子电池在首次充电过程中,负极表面会形成固体电解质相界面(SEI)膜。该过程被称为化成阶段,除了在负极表面生成固态产物外,通常还会伴随有气体产生。气体的积累,会造成电池体积膨胀、阻抗增加等问题,导致电性能衰减。SEI膜的形成与电芯化学体系、正负极极材料、电解液组分、化成工艺等紧密相关。温度影响SEI膜的生成速率,高温化成可提高电化学反应速率和SEI膜成型速率,形成的SEI膜一致性较高但疏松、不稳
一、电芯膨胀测试的原理和意义1.1 电芯膨胀测试的基本原理扣电充放电的膨胀测试是指通过特定的测试方法,监测电池在充放电过程中极片或整体的体积或厚度变化。这种测试通常用于评估电池的膨胀性能,即电池在充放电循环中因内部材料体积变化而引起的尺寸变化。1.2 电芯膨胀测试的实际意义1.评估电池性能:膨胀测试能够直接反映电池在充放电过程中的物理稳定性。过高的膨胀率可能导致电池内部短路、容量衰减甚至热失控等安
前言在锂离子电池体系中,锂电辅材成本占比较小,但是作用重要。锂电辅材主要包括溶剂和粘结剂,溶剂主要作用是溶解正负极活性物质,而粘结剂主要作用是将活性物质粘结在集流体上。在制作电极片时,溶剂可以将粘结剂、正极活性物质、导电剂等各种电极所需物质融合在一起,使粘结剂与其他物质充分接触,均匀分布。对于负极极片来说,分为水系和油系,水系采用去离子水做溶剂,可以提高电池安全性,稳定性,缺点是粘结力低。使用苏州
锂离子电池极片是多孔结构的:极片的孔隙率、孔径大小与分布以及迂曲度等微观结构参数是决定锂离子传输效率的关键因素。极片迂曲度代表了多孔电极锂离子传输路径的曲折程度,即锂离子在电极涂层的实际传输路径∆L与涂层厚度∆x的比值。可以看出有效离子电导率与迂曲度成反比,因此需要设计低迂曲度的电极结构来提高电池的性能。我们使用扣电膨胀治具加电化学工作站,通过分别测试不同压实密度下的石墨极片的曲折度,探究压实密度
辊压是指将涂布并烘干到一定程度的锂电池极片进行压实的工艺过程。极片辊压后能够增加锂电池的能量密度,并且能够使黏结剂把电极材料牢固地粘贴在极片的集流体上,从而防止因为电极材料在循环过程中从极片集流体上脱落而造成锂电池能量的损失。辊压的目的在于使活性物质与箔片结合更加质密、厚度均匀;因此,辊压是锂电池制造工艺中非常重要的一步。我们使用扣电膨胀设备,通过分别测试辊压前后的极片的膨胀量,对极片的膨胀性能进
极片作为锂离子电池的重要组成部分,在电池使用过程中承担了不可替代的的作用。锂离子电池进行充放电时,锂离子通过在两个极片之间移动从而实现电能的转化和储存。极片的材料构成、制作工艺等因素都会直接影响锂电池的性能,过重或者过轻的极片、涂布不均匀的极片都会导致锂电池的容量下降,更值得注意的是,过厚或者过薄的极片会影响锂电池的安全性能,过厚的极片增大电池内阻导致电池发热和损坏的风险增大,过薄的极片易导致电池
01 背景锂离子电池中,由于材料导电性较差,一般会发生导电不均匀、局部发热严重等问题。为了提高粘结性能与导电均匀性,会在铜箔或者铝箔等集流体表面涂覆一层导电材料,我们将这种工艺称为底涂工艺。通常来讲,该导电涂层的成分组以导电石墨、碳黑、碳纳米管与石墨烯浆料等导电剂材料为主,辅助与部分粘结剂与添加剂,分散后均匀涂覆在集流体表面,厚度为1~5μm左右。经过底涂工艺改善后,极片的粘结力、导电均匀性都会得
01背景随着我国新能源汽车行业快速发展,动力电池需求量大幅增长。目前电池正在朝着更安全、更高倍率、更高比容量、更高能量密度前进目前动力电池磷酸铁锂(LiFePO₄)正极材料为市场主流方向,但是其材料比容量较低,电池能量密度已接近理论极值,在此背景下,磷酸锰铁锂(LiMnxFe1-xPO4,简写为LMFP)具有高电压平台、高能量密度、化学性质稳定好、安全性高等优点,可作为磷酸铁锂(LFP)的升级替代
前言:隔膜离子电导率在电池技术中扮演着至关重要的角色,其重要性主要体现在以下几个方面:一、影响电池内阻隔膜离子电导率决定了离子在膜中传输的难易程度。高电导率的隔膜可以减少离子传输时的阻力,从而降低电池的内阻。在充放电过程中,低内阻意味着更小的能量损失,有助于提高电池的整体效率。二、提高电池充放电性能高电导率的隔膜允许离子更快速地通过,这直接提升了电芯的充放电速度。同时,高电导率还有助于减少离子在膜
背景在电池制造过程中,电解液的浸润性能是产品的质量的重要影响因素之一,良好的浸润性使得正极材料能够更快地与电解液中的离子接触,从而增加电荷传输效率,并提高电池的能量密度和充电速度。如果电解液无法充分浸润电极表面,可能会导致“死区”的形成,限制锂离子的传输,进而影响电池的循环性能。此外,浸润不均匀可能导致电流密度分布不均,形成的电解质界面膜(SEI)不稳定,影响电池寿命。我们使用JR-110产品,通
食品中的无机物和有机物测定是食品安全和营养分析的重要部分。无机物测定通常包含对矿物质和微量元素、重金属、无机防腐剂的测定,有机物测定通常包含蛋白质、脂肪、碳水化合物及食品添加剂的测定。每种测定方法都有其特定的应用范围、优点和局限性,依赖于具体的分析目的、样品类型以及实验室的设备条件。在本文中,我们将围绕无机物中的灰分分析和有机物中的蛋白质测定来展开论述。一、食品样品的无机分析之灰分分析前处理食品样
一、前言新能源蓬勃发展,锂离子电池出现了多元化的材料电池,镍钴锰三元锂电池,简称为三元锂电池,具有较高的能量密度,以及较大的充放电倍率,这使得它成为了电动汽车动力电池的重要选择之一,能够为电动汽车提供可靠的动力支持,满足车辆的行驶需求。其次三元锂电池在过充、过放、高温等情况下可能会发生热失控,从而引发安全事故。为了更好的了解三元锂电池的宏观表现,通过三元锂电池在终端的应用,用我司YPZ-110电芯
01背景锂离子电池是一种具有高电压、高能量密度、长的循环寿命的二次绿色电池,锂离子电池的性能很大程度上是由电极材料的性能决定的,尤其是正极材料。目前研究最广泛的正极材料有LiCoO2、LiNiO2以及LiMn2O4等,但由于钴有毒且资源有限,镍酸锂制备困难,锰酸锂的循环性能和高温性能差等因素,制约了它们的应用和发展。因此具有橄榄石结构的磷酸铁锂(LiFePO4)能够可逆地嵌脱锂,且具有比容量高、循
- 1无卤低烟阻燃材料中炭黑含量检测结果异常情况的分析
- 2GB 36246-2018中小学合成材料面层运动场地全文
- 3ASTM-D638-2003--中文版-塑料拉伸性能测定方法
- 4GBT 15065-2009 电线电缆用黑色聚乙烯塑料
- 5GB_T2951.41-2008电缆和光缆绝缘和护套材料通用试验方法
- 6GBT 13021-2023 聚烯烃管材和管件 炭黑含量的测定 煅烧和热解法
- 7PEG熔融相变温度测试
- 8聚碳酸酯(PC) DSC测试玻璃化转变温度
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文集 ▏化学吸附 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注?
- 为什么介孔SiO2在药物递送领域的应用越来越多?
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 飞纳台式扫描电镜助力纳米纤维在心血管组织再生中的研究
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机
- 国产新品泡沫起升仪可替代德国format